

A simple synthesis of several methyl 2-oxo-2,3-dihydrobenzo[b]oxepine-4-carboxylates from BaylisHillman adducts of O-benzyl protected 2-hydroxybenzadehydes has been described through the acetylation, cyanation, debenzylation, as well as acid assisted Pinner cyclization.
J. Heterocyclic Chem., 45, 1701 (2008).

The Baylis-Hillman (BH) reaction [1] has attracted the attention of organic chemists in recent years as this reaction provides synthetically useful multifunctional molecules that have been successfully employed in the synthesis of various heterocycles. During continued efforts to develop Baylis-Hillman chemistry [2], we recently reported [3] that methyl 2-amino-3H-1-benzazepine-4-carboxylates 2 or methyl 2-(cyanomethyl)-2,3-dihydro- 1 H -indole-2-carboxylates $\mathbf{3}$ were prepared from the reaction of methyl 2-(cyanomethyl)-3-(2acylaminophenyl)propenoates $\mathbf{1}$, which were readily obtained from BH adducts of N -protected 2-aminobenzaldehydes, with sodium methoxide in methanol as shown in Scheme 1. We envisioned that we could synthesize methyl 2-oxo-2,3-dihydrobenzo[b]-oxepine-4-carboxylates 5 or 2,3-dihydrobenzofurans $\mathbf{6}$ by the cyclization of methyl 2-(cyanomethyl)-3-(2-hydroxyphenyl)propenoates 4 (Scheme 2).

The Baylis-Hillman reactions of salicylaldehydes with acrylic acid esters are well known [4] to afford a mixture of coumarins and chromenes, directly. So, treatment of several known O-benzyl protected 2-hydroxybenz-

Scheme 1

3
aldehydes 8a-f with 3 equivalents of methyl acrylate and triethanolamine in the presence of 1 equivalent of 1,4diazabicyclo[2,2,0]octane (DABCO) without solvent at room temperature produced BH adducts, methyl 3-(2-benzyloxy)phenyl-3-hydroxy-2-methylenepropanoates 9a-f in $69-95 \%$ yields. The reaction of $9 \mathbf{a - f}$ with acetic anhydride in the presence of a catalytic amount of 4(dimethylamino) pyridine(DMAP) in dichloromethane at room temperature gave BH acetates 10a-f in $85-98 \%$ yields. The cyanation reaction of the acetates 10a-f with potassium cyanide $[3,5]$ in dimethyl sulfoxide-water (3:1) at room temperature occurred in an $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ fashion to give

Scheme 2

4

6
methyl 3-(2-benzyloxy)phenyl-2-(cyanomethyl)propenoates 11a-f (69-91\%). In all cases, the stereoselectivity was found to be $100 \% E$-selectivity, as determined by ${ }^{1} \mathrm{H} \mathrm{nmr}$ analysis of alkene and methylene protons by comparison with literature values [3]. Debenzylation of 11a-f using boron trifluoride etherate and dimethyl sulfide [6] in dichloromethane gave the required key intermediate methyl 3-(2-hydroxyphenyl)-2-(cyanomethyl)propenoates 12a-f in 65$84 \%$ yields. We investigated the intramolecular Pinner cyclization reaction [7] using 12a-f with para-toluene-
Scheme 3

$\mathbf{7 - 1 3}$	a	b	c	d	e	f
R_{1}	H	Br	H	Me	NO_{2}	Cl
R_{2}	H	H	OEt	H	H	Cl

sulfonic acid in toluene. After stirring the mixture at reflux temperature for $0.5-8$ hours, the desired methyl 2-oxo-2,3dihydrobenzo $[b]$ oxepine-4-carboxylates 13a-f were obtained in $50-87 \%$ yields. Electron-donating or electronwithdrawing substituted compounds gave the corresponding benzoxepines in reasonable yields (Scheme 3).

Next we examined a reaction using 12a with sodium methoxide in methanol. After stirring the mixture at reflux temperature for 24 hours, the only product 3-cyanomethyl coumarin 16 was obtained in a disappointing yield (36\%) along with the recovered starting compound 12a (25\%). When using excess base the increase of yield was

Scheme 4

12a
14

6

15
36%

16
unsuccessful. Apparently under these reaction conditions, base-promoted E / Z isomerization took place preferentially to give $\mathbf{1 5}$, followed by subsequent formation of lactone to produce coumarin 16. The possible dihydrobenzofuran 6 was not obtained (Scheme 4).

The selective synthesis of seven-membered ring lactones, fused to an aromatic ring, is of considerable interest due to their presence in biologically and pharmacologically active compounds [8]. Several approaches to such benzoxepines involve cyclization of (E)-itaconic half-esters with sodium acetate in boiling acetic anhydride [9], intramolecular cyclocarbonylation of 2-allylphenols catalyzed by palladium complex [10], allenyl alcohols catalyzed by a ruthenium complex [11], cyclization of 2-iodobenzyl alcohols with propiolates catalyzed by $\mathrm{Ni}(d p p e) \mathrm{Br}_{2}$ and zinc powder [12], the rhodium-catalyzed carbon-carbon bond cleavage of cyclobutanone [13], and the ring closing methathesis reaction of acrylic ester of 2-allylphenol [14].

In summary, a new method for the synthesis of methyl 2-oxo-2,3-dihydrobenzo[b]oxepine-4-carboxylates from Baylis-Hillman adducts of O-benzyl protected 2-hydroxybenzaldehydes has been developed through the acetylation, cyanation, debenzylation, as well as acid assisted cyclization.

EXPERIMENTAL

Silica gel 60 (70-230 mesh ASTM) used for column chromatography was supplied by E. Merck. Analytical thin layer chromatography (TLC) was performed on Merck silica gel 60 F_{254} TLC plates. Melting points were measured by an Electrothermal melting point apparatus and were uncorrected. Microanalysis was obtained using a Thermo Electron Corporation Flash EA 1112 element analyzer. Infrared spectra were recorded with a Nicolet Magna 550 FTIR spectrometer. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} \mathrm{nmr} \mathrm{spectra} \mathrm{were} \mathrm{measured} \mathrm{on} \mathrm{a} \mathrm{Gemini} 300$ spectrometer using deuteriochloroform. All chemical shifts are reported in parts per million relative to tetramethylsilane. The coupling constants (J) are expressed in Hertz.

The known 2-benzyloxybenzaldehydes 8a [15], 8b [16], 8c [17], 8d, 8e [18] and BH adducts 9a [19], 9b, 9c [20] were prepared according to literature procedure.

2-(Benzyloxy)-3,5-dichlorobenzaldehyde (8f) [21]. A mixture of $7 \mathbf{f}(3.82 \mathrm{~g}, 10 \mathrm{mmoles})$, benzyl bromide $(1.31 \mathrm{ml}, 11$ mmoles), and potassium carbonate ($1.52 \mathrm{~g}, 11 \mathrm{mmoles}$) in dimethyl sulfoxide (10 ml) was stirred at $40{ }^{\circ} \mathrm{C}$ for 30 minutes. The mixture was diluted with water $(20 \mathrm{ml})$ and extracted with dichloromethane ($3 \times 20 \mathrm{ml}$). The combined organic layers were dried over anhydrous magnesium sulfate and the solvent was evaporated in vacuo. The resulting mixture was chromatographed on silica gel eluting with hexane/ethyl acetate (3:1) to produce $\mathbf{8 f}$ $(2.59 \mathrm{~g}, 92 \%)$ as a white solid; $\mathrm{mp}: 81-83^{\circ} \mathrm{C}$; ir (potassium bromide): $1693 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 5.14$ (s, 2 H), $7.35-7.41(\mathrm{~m}, 5 \mathrm{H}), 7.67(\mathrm{~m}, 2 \mathrm{H}), 9.98(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): $\delta 77.7,126.5,128.9,129.0,129.2,130.0$, 130.6, 132.0, 134.8, 135.7, 155.9, 187.6. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2}: \mathrm{C}, 59.81 ; \mathrm{H}, 3.59$. Found: C, 59.68; H, 3.82.

Methyl 3-(2-Benzyloxy-5-methyl)phenyl-3-hydroxy-2-methylenepropanoate ($\mathbf{9 d}$). A mixture of $\mathbf{8 d}(2.26 \mathrm{~g}, 10 \mathrm{mmoles})$, methyl acrylate ($2.7 \mathrm{ml}, 30 \mathrm{mmoles}$), DABCO ($1.12 \mathrm{~g}, 10$ mmoles), and triethanolamine ($1.07 \mathrm{ml}, 8 \mathrm{mmoles}$) was stirred at room temperature for 15 days. The mixture was diluted with water $(20 \mathrm{ml})$ and extracted with dichloromethane ($3 \times 20 \mathrm{ml}$). The combined organic layers were dried over anhydrous magnesium sulfate and the solvent was evaporated in vacuo. The resulting mixture was chromatographed on silica gel eluting with hexane/ethyl acetate (3:1) to produce $9 \mathrm{~d}(2.14 \mathrm{~g}, 69 \%)$ as a white solid; mp 58.5-59.5 ${ }^{\circ} \mathrm{C}$; ir (potassium bromide): 3417, $1721 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 2.29$ (s, 3 H), 3.38 (d, $1 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 5.91$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 6.81-6.83(\mathrm{~m}, 1 \mathrm{H}), 7.02-7.05$ $(\mathrm{m}, 1 \mathrm{H}), 7.18-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.45(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): $\delta \quad 20.6,51.9,68.4,70.3,111.9,125.9$, $127.3,127.9,128.3,128.5,129.1,130.3,136.9,141.3,153.6$, 167.1. Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4}: \mathrm{C}, 73.06 ; \mathrm{H}, 6.45$. Found: C, 73.33; H, 6.24.

Methyl 3-(2-Benzyloxy-5-nitro)phenyl-3-hydroxy-2-methylenepropanoate (9 e). A mixture of 8 e ($1.29 \mathrm{~g}, 5 \mathrm{mmoles}$), methyl acrylate ($1.35 \mathrm{ml}, 15 \mathrm{mmoles}$), DABCO ($0.56 \mathrm{~g}, 5$ mmoles), and triethanolamine ($0.53 \mathrm{ml}, 4$ mmoles) was stirred at room temperature for 4 hours. The mixture was diluted with water (10 ml) and extracted with dichloromethane ($3 \times 20 \mathrm{ml}$). The combined organic layers were dried over anhydrous magnesium sulfate and the solvent was evaporated in vacuo. The resulting mixture was chromatographed on silica gel eluting with hexane/ethyl acetate (3:1) to produce $9 \mathrm{e}(1.63 \mathrm{~g}, 95 \%)$ as a white solid; $\mathrm{mp} 87.5-89{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 3477,1720 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 3.41$ (d, $1 \mathrm{H}, \mathrm{J}=6.1 \mathrm{~Hz}$), $3.74(\mathrm{~s}, 3 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.1$ $\mathrm{Hz}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz})$, $7.33-7.43(\mathrm{~m}, 5 \mathrm{H})$, $8.17(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.2$ and 2.8 Hz$), 8.39(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ nmr (deuteriochloroform): $\delta 52.1,67.5,71.0,111.4,123.7$, $125.1,127.0,127.4,128.6,128.8,131.0,135.2,140.1,141.7$, 160.2, 166.7. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{6}: \mathrm{C}, 62.97$; $\mathrm{H}, 4.99$; N , 4.08. Found: C, 62.78; H, 4.76; N, 3.89 .

Methyl 3-(2-Benzyloxy-3,5-dichloro)phenyl-3-hydroxy-2methylenepropanoate (9f). A mixture of $\mathbf{8 f}(1.41 \mathrm{~g}, 5 \mathrm{mmoles})$, methyl acrylate ($1.35 \mathrm{ml}, 15 \mathrm{mmoles}$), DABCO ($0.56 \mathrm{~g}, 5$ mmoles), and triethanolamine ($0.53 \mathrm{ml}, 4$ mmoles) was stirred at room temperature for 6 hours. The mixture was diluted with water (10 ml) and extracted with dichloromethane $(3 \times 20 \mathrm{ml})$. The combined organic layers were dried over anhydrous magnesium sulfate and the solvent was evaporated in vacuo. The resulting mixture was chromatographed on silica gel eluting with hexane/ethyl acetate (3:1) to produce $\mathbf{9 f}(1.74 \mathrm{~g}, 95 \%)$ as an oil; ir (potassium bromide): 3431, $1716 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 2.79$ (d, $1 \mathrm{H}, \mathrm{J}=5.1 \mathrm{~Hz}$), 3.72 ($\mathrm{s}, 3 \mathrm{H}$), 5.08 (two d, $2 \mathrm{H}, \mathrm{J}=11.0 \mathrm{~Hz}$), $5.76(\mathrm{~s}, 1 \mathrm{H}), 5.80(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $5.1 \mathrm{~Hz}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.48(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): $\delta 52.1,67.2,75.4,126.6,126.8,128.4$, $128.5,128.6,128.8,129.9,136.3,138.1,140.5,151.0,160.7$, 166.4. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{4}: \mathrm{C}, 58.87 ; \mathrm{H}, 4.39$. Found: C, 58.65; H, 4.41.

Preparation of BH Acetates 10: General Procedure. Acetic anhydride ($1.42 \mathrm{ml}, 15 \mathrm{mmoles}$) and 4 -(dimethylamino)pyridine ($0.22 \mathrm{~g}, 2$ mmoles) were added to a stirred solution of BH adduct 9 (10 mmoles) in dichloromethane (15 ml) at room temperature. After stirring for $20-60$ minutes the reaction mixture was diluted with saturated aqueous sodium bicarbonate
solution (10 ml) and extracted with dichloromethane (3×20 ml). The combined organic layers were dried over anhydrous magnesium sulfate and the solvent was evaporated in vacuo. The resulting mixture was chromatographed on silica gel eluting with hexane/ethyl acetate (3:1) to produce $\mathbf{1 0}$ as an oil or solid.

The physical and spectral data of $\mathbf{1 0}$ prepared by this general method follows.
Methyl 3-Acetoxy-3-(2-benzyloxy)phenyl-2-methylenepropanoate (10a). Reaction time: 20 minutes; oil; yield: 95%; ir (neat): $1744,1726 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 2.08$ (s, $3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H})$, 6.91-6.97 (m, 2 H), $7.14(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.42(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): $\delta 21.0,51.9,68.2,70.0,112.2,120.7$, $126.4,127.0,127.3,127.7,128.4,129.5,136.9,139.0,155.8$, 165.7, 169.4. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{5}: \mathrm{C}, 70.57$; $\mathrm{H}, 5.92$. Found: C, 70.39; H, 5.74.
Methyl 3-Acetoxy-3-(2-benzyloxy-5-bromo)phenyl-2-methylenepropanoate (10b). Reaction time: 30 minutes; oil; yield: 98%; ir (neat): $1747,1728 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): δ $2.10(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1$ H), 6.78-6.80 (m, 1 H), 7.07 (s, 1 H$), 7.29-7.39$ (m, 7 H); ${ }^{13} \mathrm{C}$ nmr (deuteriochloroform): $\delta 21.0,52.0,67.5,70.3,113.0,114.0$, $127.0,127.8,127.9,128.5,128.8,130.5,132.1,136.3,138.5$, 154.8, 165.4, 169.3. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{BrO}_{5}: \mathrm{C}, 57.29$; H , 4.57. Found: C, 57.05; H, 4.39

Methyl 3-Acetoxy-3-(2-benzyloxy-3-ethoxy)phenyl-2-methylenepropanoate (10c). Reaction time: 30 minutes; white solid; yield: 85%; mp: 63-64.5 ${ }^{\circ} \mathrm{C}$; ir (potassium bromide): 1745,1727 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 1.46(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}$), $2.06(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 4.09(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}), 5.11(\mathrm{~s}, 2$ H), 5.59 (s, 1 H), 6.37 (s, 1 H), 6.87-7.07 (m, 3 H), 7.12 (s, 1 H), 7.28-7.54 (m, 5 H); ${ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): $\delta 14.9,21.0$, $51.9,64.2,68.3,74.6,113.5,119.4,124.0,127.4,127.8,128.2$, 128.3, 131.7, 137.7, 139.0, 145.9, 152.1, 165.6, 169.4. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{6}$: C, 68.74; H, 6.29. Found: C, 68.61 ; H, 6.06 .

Methyl 3-Acetoxy-3-(2-benzyloxy-5-methyl)phenyl-2-methylenepropanoate (10d) Reaction time: 1 hour; oil; yield: 98%; ir (dichloromethane): $1745,1726 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 2.09$ (s, 3 H), 2.27 (s, 3 H), 3.69 (s, 3 H), 5.09 (s, $2 \mathrm{H}), 5.67$ (s, 1 H), 6.41 (s, 1 H$), 6.80-6.83$ (m, 1 H), 7.04-7.07 $(\mathrm{m}, 2 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.41(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): δ 20.6, 21.0, 51.9, 68.2, 70.1, 112.3, 126.1, 127.0, 127.1, 127.7, 128.3, 128.4, 129.9, 130.0, 137.1, 139.1, 153.8, 165.7, 169.5. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{5}: \mathrm{C}, 71.17$; H, 6.26. Found: C, 71.32; H, 6.31 .

Methyl 3-Acetoxy-3-(2-benzyloxy-5-nitro)phenyl-2-methylenepropanoate (10e). Reaction time: 30 minutes; white solid; yield: 91%; mp: $80-82.5{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 1747,1727 cm^{-1}; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 2.13$ (s, 3 H), 3.70 ($\mathrm{s}, 3 \mathrm{H}$), $5.23(\mathrm{~s}, 2 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 6.98-7.01(\mathrm{~m}, 1 \mathrm{H})$, $7.08(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.40(\mathrm{~m}, 5 \mathrm{H}), 8.17-8.22(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): $\delta 20.9,52.1,67.3,70.9,111.8,123.8$, 125.7, 127.1, 128.0, 128.3, 128.4, 128.7, 135.2, 137.9, 141.4, 160.5, 165.2, 169.3. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{7}: \mathrm{C}, 62.33 ; \mathrm{H}$, 4.97; N, 3.63. Found: C, 62.11; H, 4.88; N, 3.42.

Methyl 3-Acetoxy-3-(2-benzyloxy-3,5-dichloro)phenyl-2methylenepropanoate (10f). Reaction time: 30 minutes; oil; yield: 90%; ir (potassium bromide): $1748,1728 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 2.10$ (s, 3 H), 3.70 (s, 3 H), 5.11 (two d, $2 \mathrm{H}, \mathrm{J}=13.4 \mathrm{~Hz}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H})$, $7.20-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.55(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$
nmr (deuteriochloroform): $\delta 20.9,52.1,67.7,75.4,126.8,128.0$, $128.3,128.4,128.5,129.3,129.7,130.5,134.7,136.3,138.2$, 151.5, 165.1, 169.2. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{O}_{5}$: C, 58.69 ; H, 4.43. Found: C, 58.72; H, 4.56

Preparation of Methyl 3-(2-Benzyloxy)phenyl-2-(cyanomethyl)propenoates 11: General Procedure. Potassium cyanide ($0.49 \mathrm{~g}, 7.5 \mathrm{mmoles}$) was added to a stirred solution of BH acetate $\mathbf{1 0}$ in aqueous dimethyl sulfoxide ($1: 3,10 \mathrm{ml}$) at room temperature. After stirring for 5-60 minutes the reaction mixture was diluted with water (10 ml) and extracted with diethyl ether $(3 \times 10 \mathrm{ml})$. The combined organic layers were dried over anhydrous magnesium sulfate and the solvent was evaporated in vacuo. The resulting mixture was chromatographed on silica gel eluting with hexane/ethyl acetate (3:1) to produce $\mathbf{1 1}$ as an oil or solid.
The physical and spectral data of $\mathbf{1 1}$ prepared by this general method follows.

Methyl (E)-3-(2-Benzyloxy)phenyl-2-(cyanomethyl)propenoate (11a). Reaction time: 1 hour; oil; yield: 77%; ir (neat): 2250, $1713 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 3.46(\mathrm{~s}, 2 \mathrm{H})$, 3.88 (s, 3 H), 5.16 (s, 2 H), 6.97-7.07 (m, 2 H), 7.31-7.39 (m, 7 $\mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): $\delta 17.4,52.6$, $70.4,112.8,117.6,121.1,122.0,123.3,127.1,128.1,128.6$, 129.8, 131.3, 136.4, 140.5, 156.6, 166.2. Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{3}$: C, 74.25; H, 5.58; N, 4.56. Found: C, 74.04; H, 5.38; N, 4.34.

Methyl (E)-3-(2-Benzyloxy-5-bromo)phenyl-2-(cyanomethyl)propenoate (11b). Reaction time: 20 minutes; pale yellow solid; yield: 85%; mp: $94-95^{\circ} \mathrm{C}$; ir (potassium bromide): 2252, $1714 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 3.43$ ($\mathrm{s}, 2 \mathrm{H}$), 3.89 (s, 3 H), 5.14 (s, 2 H), 6.85-6.88 (m, 1 H), 7.30-7.45 (m, 7 $\mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): $\delta 17.3,52.8$, $70.7,113.2,114.6,117.1,123.4,125.2,127.1,128.2,128.7$, $132.1,133.7,135.8,138.9,155.5,165.8$. Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{BrNO}_{3}: \mathrm{C}, 59.08 ; \mathrm{H}, 4.18 ; \mathrm{N}, 3.63$. Found: C, $59.24 ; \mathrm{H}$, 3.91; N, 3.40 .

Methyl (E)-3-(2-Benzyloxy-3-ethoxy)phenyl-2-(cyanomethyl)propenoate (11c). Reaction time: 20 minutes; oil; yield: 69%; ir (neat): $2250,1712 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 1.50$ (t, $3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}$), 3.28 (s, 2 H), 3.86 ($\mathrm{s}, 3$ H), 4.14 (q, $2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}$), 5.03 ($\mathrm{s}, 2 \mathrm{H}$), 6.82-7.24 (m, 3 H), 7.28-7.33 (m, 5 H), $7.85(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): $\delta 14.9,17.2,52.5,64.4,75.2,114.9,117.5,120.8,122.4,124.5$, 128.2, 128.3, 129.0, 136.8, 140.8, 145.8, 152.3, 166.0. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{4}$: C, $71.78 ; \mathrm{H}, 6.02$; N, 3.99. Found: C, 71.53 ; H, 5.85; N, 3.70.

Methyl (E)-3-(2-Benzyloxy-5-methyl)phenyl-2-(cyanomethyl)propenoate (11d). Reaction time: 30 minutes; white solid; yield: 89%; mp: $79-81^{\circ} \mathrm{C}$; ir (potassium bromide): 2250 , $1713 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 2.32$ (s, 3 H), 3.46 (s, $2 \mathrm{H}), 3.88$ (s, 3 H), 5.12 ($\mathrm{s}, 2 \mathrm{H}$), 6.86-6.89 (m, 1 H), 7.11-7.16 (m, 2 H), 7.31-7.41 (m, 5 H$), 8.09(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): $\delta 17.4,20.5,52.6,70.5,112.9,117.7$, $121.8,123.1,127.1,128.0,128.6,130.2,130.5,131.7,136.6$, 140.7, 154.5, 166.2. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{3}: \mathrm{C}, 74.75 ; \mathrm{H}$, 5.96; N, 4.36. Found: C, 74.52; H, 5.85; N, 4.18.

Methyl (E)-3-(2-Benzyloxy-5-nitro)phenyl-2-(cyanomethyl)propenoate (11e). Reaction time: 5 minutes; white solid; yield: 91%; mp: 113-115 ${ }^{\circ} \mathrm{C}$; ir (potassium bromide): 2253, $1714 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 3.47$ (s, 2 H), 3.91 (s, 3 H), 5.29 (s, 2 H), 7.07-7.10 (m, 1 H), 7.39-7.44 (m, 5 H$), 7.99(\mathrm{~s}, 1 \mathrm{H})$, 8.18-8.19 (m, 1 H), 8.24-8.28 (m, 1 H); ${ }^{13} \mathrm{C} \mathrm{nmr}$ (deuterio-
chloroform): $\delta 17.2,52.9,71.3,112.5,116.5,123.8,124.8$, 125.4, 126.9, 127.1, 128.7, 128.9, 134.8, 137.8, 141.3, 161.0, 165.5. Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 64.77; H, 4.58; $\mathrm{N}, 7.95$. Found: C, 64.59; H, 4.72; N, 7.69.

Methyl (E)-3-(2-Benzyloxy-3,5-dichloro)phenyl-2-(cyanomethyl)propenoate (11f). Reaction time: 15 minutes; oil; yield: 71%; ir (potassium bromide): 2252, $1718 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 3.25$ (s, 2 H), 3.87 (s, 3 H), 4.96 (s, 2 H), 7.12 (d, $1 \mathrm{H}, \mathrm{J}=2.5 \mathrm{~Hz}$), $7.28-7.36$ (m, 5 H), 7.49 (d, $1 \mathrm{H}, \mathrm{J}$ $=2.5 \mathrm{~Hz}), 7.63(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): $\delta 17.1$, $52.8,76.3,116.5,124.6,127.6,128.5,128.8,129.2,130.0$, 130.1, 131.2, 131.5, 135.4, 138.2, 151.3, 165.3. Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{NO}_{3}$: C, 60.65; H, 4.02; N, 3.72. Found: C, 60.42; H, 4.15; N, 3.50 .

Preparation of Methyl (E)-2-Cyanomethyl-3-(2-hydroxyphenyl)propenoates 12 : General procedure. To a stirred solution of $\mathbf{1 1}(1 \mathrm{mmole})$ in anhydrous dichloromethane (10 ml) was added boron trifluoride etherate ($1.23 \mathrm{ml}, 10 \mathrm{mmoles}$) and dimethyl sulfide ($4.44 \mathrm{ml}, 60 \mathrm{mmoles}$) at room temperature. After stirring for 2-24 hours under nitrogen atmosphere, the mixture was diluted with aqueous ammonium hydroxide (0.1 M , $20 \mathrm{ml})$ and extracted with dichloromethane ($3 \times 30 \mathrm{ml}$). The combined organic layers were dried over anhydrous magnesium sulfate and the solvent was evaporated in vacuo. The resulting mixture was chromatographed on silica gel eluting with hexane/ethyl acetate ($3: 1$) to produce $\mathbf{1 2}$ as a solid.
The physical and spectral data of $\mathbf{1 2}$ prepared by this general method follows.

Methyl (E)-2-Cyanomethyl-3-(2-hydroxyphenyl)propenoate (12a). Reaction time: 5 hours; white solid; yield: 68%; mp: $101-103.5{ }^{\circ} \mathrm{C}$; ir (potassium bromide): $3334,2257,1707 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 3.47(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 6.27$ (s, 1 H), 6.88-7.02 (m, 2 H), 7.24-7.31 (m, 2 H), 8.04 (s, 1 H); ${ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): $\delta 17.5,52.8,116.2,117.6,120.8$, 120.9, 122.1, 129.9, 131.4, 140.5, 154.1, 166.5. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{3}: \mathrm{C}, 66.35 ; \mathrm{H}, 5.10 ; \mathrm{N}, 6.45$. Found: C, $66.11 ; \mathrm{H}$, 4.88; N, 6.29.

Methyl (E)-3-(5-Bromo-2-hydroxy)phenyl-2-(cyanomethyl)propenoate (12b). Reaction time: 12 hours; white solid; yield: 83%; mp: $150-152{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 3396, 2254, $1692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethyl sulfoxide- d_{6}): $\delta 3.59(\mathrm{~s}, 2 \mathrm{H}), 3.82$ (s, 3 H$), 6.90-6.93(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H})$, 10.59 (br s, 1 H); ${ }^{13} \mathrm{C} \mathrm{nmr}$ (dimethyl sulfoxide- d_{6}): $\delta 16.9,52.6$, 110.1, 117.9, 118.0, 122.5, 122.7, 131.7, 133.7, 137.9, 155.2, 165.8. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrNO}_{3}$: C, 48.67; H, 3.40; N, 4.73. Found: C, 48.62; H, 3.43; N, 4.65.
Methyl (E)-2-Cyanomethyl-3-(3-ethoxy-2-hydroxy)phenylpropenoate (12c). Reaction time: 2 hours; white solid; yield: 65%; mp: 148.5-150 ${ }^{\circ} \mathrm{C}$; ir (potassium bromide): 3356,2254 , $1720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 1.48(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.0$ Hz), 3.48 (s, 2 H), 3.89 ($\mathrm{s}, 3 \mathrm{H}$), 4.15 ($\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}$), 6.11 (s, 1 H), 6.86-6.91 (m, 3 H$), 8.03(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): $\delta 14.8,17.6,52.6,64.8,112.6,117.6$, 120.0, 121.3, 122.4, 128.7, 139.4, 144.2, 146.0, 166.2. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4}$: C, 64.36; H, 5.79; N, 5.36. Found: C, 64.13; H, 5.55; N, 5.12.

Methyl (\boldsymbol{E})-2-Cyanomethyl-3-(2-hydroxy-5-methyl)phenylpropenoate (12d). Reaction time: 10 hours; white solid; yield: 75%; mp: 113.5-115 ${ }^{\circ} \mathrm{C}$; ir (potassium bromide): 3380, 2256, $1710 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 2.30$ (s, 3 H), 3.46 (s, $2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 6.76-6.80(\mathrm{~m}, 1 \mathrm{H}), 7.03-7.09$ $(\mathrm{m}, 2 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): $\delta 17.6$,
$20.5,52.7,116.1,117.6,120.7,122.2,130.1,130.2,132.0$, 140.5, 151.7, 166.5. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{3}: \mathrm{C}, 67.52$; H, 5.67; N, 6.06. Found: C, 67.35 ; H, 5.46; N, 5.79.

Methyl (E)-2-Cyanomethyl-3-(2-hydroxy-5-nitro)phenylpropenoate (12e). Reaction time: 10 hours; pale yellow solid; yield: 76%; mp: $169-172{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 3221, 2266, $1705 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethyl sulfoxide- d_{6}): $\delta 3.64(\mathrm{~s}, 2$ H), $3.84(\mathrm{~s}, 3 \mathrm{H}), 7.10-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 8.16-8.23$ (m, 2 H), 11.88 (br s, 1 H); ${ }^{13} \mathrm{C} \mathrm{nmr}$ (dimethyl sulfoxide- d_{6}): δ 16.9, 52.7, 116.2, 117.8, 121.1, 123.8, 125.9, 127.0, 137.2, 139.4, 161.9, 165.6. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{5}: \mathrm{C}, 54.97$; H, 3.84; N, 10.68. Found: C, 54.72; H, 3.79; N, 10.43.

Methyl (E)-2-Cyanomethyl-3-(3,5-dichloro-2-hydroxy)phenylpropenoate (12f). Reaction time: 4 hours; white solid; yield: 73%; mp: $129-132{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 3280 , 2272, $1720 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 3.44(\mathrm{~s}, 2 \mathrm{H})$, 3.91 (s, 3 H), 5.95 ($\mathrm{s}, 1 \mathrm{H}$), 7.18 (d, $1 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}$), 7.42 (d, 1 $\mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}$), $7.88(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): δ $17.5,52.9,116.7,121.4,123.0,124.8,125.8,128.2,129.8$, 137.5, 148.0, 165.5. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}_{3}: \mathrm{C}, 50.38$; H , 3.17; N, 4.90. Found: C, 50.15; H, 3.06; N, 4.69.

Preparation of Methyl 2-Oxo-2,3-dihydrobenzo[b]-oxepine-4-carboxylates 13: General Procedure. A stirred solution of 12 (1 mmole) and para-toluenesulfonic acid monohydrate ($0.38 \mathrm{~g}, 2$ mmoles) in toluene (5 ml) was heated at reflux temperature for $0.5-8$ hours. After cooling to room temperature, the mixture was diluted with saturated aqueous sodium bicarbonate solution (5 ml) and extrated with dichloromethane $(3 \times 10 \mathrm{ml})$. The combined organic layers were dried over anhydrous magnesium sulfate and the solvent was evaporated in vacuo. The resulting mixture was chromatographed on silica gel eluting with hexane/ethyl acetate (3:1) to produce $\mathbf{1 3}$ as a solid.

The physical and spectral data of $\mathbf{1 3}$ prepared by this general method follows.
Methyl 2-Oxo-2,3-dihydrobenzo[b]oxepine-4-carboxylate (13a). Reaction time: 2 hours; white solid; yield: 78\%; mp: 84.5$86.5{ }^{\circ} \mathrm{C}$; ir (potassium bromide): $1770,1699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 3.45(\mathrm{~s}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 7.27-7.52$ (m, 4 H), 7.89 ($\mathrm{s}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): $\delta 33.2$, 52.7, 121.4, 124.8, 125.1, 125.6, 130.9, 131.4, 137.7, 150.7, 165.0, 167.7. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{4}$: $\mathrm{C}, 66.05 ; \mathrm{H}, 4.62$. Found: C, 65.87; H, 4.48.

Methyl 7-Bromo-2-oxo-2,3-dihydrobenzo[b]oxepine-4carboxylate (13b). Reaction time: 1 hour; white solid; yield: 76%; mp: 112-114 ${ }^{\circ} \mathrm{C}$; ir (potassium bromide): $1771,1714 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 3.45$ (s, 2 H), 3.89 (s, 3 H), 7.16-7.19 (m, 1 H), 7.57-7.60 (m, 2 H), $7.80(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): $\delta 33.2,52.9,117.9,123.3,126.1,127.4$, 133.2, 134.2, 136.3, 149.7, 164.6, 166.9. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{BrO}_{4}: \mathrm{C}, 48.51 ; \mathrm{H}, 3.05$. Found: C, $48.39 ; \mathrm{H}, 2.89$.

Methyl 9-Ethoxy-2-oxo-2,3-dihydrobenzo [b]oxepine-4carboxylate (13c). Reaction time: 8 hours; pale yellow solid; yield: 61%; mp: $88-90{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 1767,1713 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 1.48(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}$), $3.44(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.13(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}), 6.90-7.05(\mathrm{~m}$, 2 H), 7.17-7.22 (m, 1 H), 7.86 (s, 1 H); ${ }^{13} \mathrm{C} \mathrm{nmr} \mathrm{(deuterio-}$ chloroform): $\delta 14.7,33.5,52.7,64.9,114.6,121.7,125.1,125.3$, 126.9, 137.8, 140.5, 150.1, 165.0, 167.7. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{5}: \mathrm{C}, 64.12 ; \mathrm{H}, 5.38$. Found: C, 63.90; H, 5.41.

Methyl 7-Methyl-2-oxo-2,3-dihydrobenzo[b]oxepine-4carboxylate (13d). Reaction time: 30 minutes; pale yellow
solid; yield: 87%; mp: 103-104.5 ${ }^{\circ} \mathrm{C}$; ir (potassium bromide): $1761,1716 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 2.39(\mathrm{~s}, 3 \mathrm{H})$, $3.43(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 7.16-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ nmr (deuteriochloroform): δ 20.6, 33.2, 52.7, 121.2, 124.6, 125.3, 130.9, 132.2, 134.8, 137.8, 148.8, 165.1, 167.9. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{4}$: C, 67.23; H, 5.21. Found: C, 67.05 ; H, 5.18.

Methyl 7-Nitro-2-oxo-2,3-dihydrobenzo[b]oxepine-4-carboxylate (13e). Reaction time: 1 hour; white solid; yield: 50%; mp: $149-152{ }^{\circ} \mathrm{C}$; ir (potassium bromide): $1783,1716 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 3.51$ (s, 2 H), 3.92 (s, 3 H), 7.43-7.46 $(\mathrm{m}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 8.32-8.39(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): $\delta 33.4,53.1,122.9,126.0,126.2,126.7$, 127.2, 135.8, 144.3, 154.2, 164.3, 165.4. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}_{6}$: C, 54.76; H, 3.45; N, 5.32. Found: C, 54.51; H, 3.22; N, 5.49.

Methyl 7,9-Dichloro-2-oxo-2,3-dihydrobenzo[b]oxepine-4carboxylate (13f). Reaction time: 1 hour; white solid; yield: 63%; mp: 139-142 ${ }^{\circ} \mathrm{C}$; ir (potassium bromide): $1786,1717 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 3.46$ (s, 2 H), 3.90 (s, 3 H), 7.33 (d, 1 H, J = 2.4 Hz), 7.58 (d, $1 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}$), $7.79(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ nmr (deuteriochloroform): $\delta 33.3,53.0,127.0,127.7,128.2$, 128.5, 130.3, 131.5, 135.8, 145.0, 164.4, 166.0. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{4}$: C, 50.20; H, 2.81. Found: C, $50.02 ; \mathrm{H}, 2.64$.

3-Cyanomethylcoumarin (16). To a stirred solution of 12a ($0.22 \mathrm{~g}, 1 \mathrm{mmole}$) in methanol (3 ml) was added sodium methoxide ($0.065 \mathrm{~g}, 1.2$ mmoles) and refluxed for 24 hours. The reaction mixture was neutralized with 5% aqueous hydrochloric acid solution $(5 \mathrm{ml})$ and extracted with dichloromethane $(3 \times 20$ $\mathrm{ml})$. The combined organic layers were dried over anhydrous magnesium sulfate and the solvent was evaporated in vacuo. The resulting mixture was chromatographed on silica gel eluting with hexane/ethyl acetate (3:1) to produce $\mathbf{1 6}$ as a yellow solid after crystallization with cold methanol, along with the recovery of starting compound 12a (25\%); mp: 166-168 ${ }^{\circ} \mathrm{C}$; ir (potassium bromide): $2260,1715 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 3.71$ (d, $2 \mathrm{H}, \mathrm{J}=1.5 \mathrm{~Hz}$), 7.32-7.39 (m, 2 H), 7.56-7.62 (m, 2 H), 7.96 (s, 1 H); ${ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): δ 19.5, 116.0, 116.7, 118.4, 118.7, 124.9, 128.0, 132.3, 140.6, 153.4, 160.1. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{NO}_{2}$: $\mathrm{C}, 71.35 ; \mathrm{H}, 3.81 ; \mathrm{N}, 7.56$. Found: C, 71.12; H, 3.75; N, 7.33.

Acknowledgement. This study was supported by a grant of University IT Research Center Project, Republic of Korea

REFERENCES AND NOTES

* Author to whom correspondence should be addressed.
[1a] For reviews of the Baylis-Hillman reaction, see: Drewes, S. E.; Roos, G. H. P. Tetrahedron 1988, 44, 4653. [b] Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996, 52, 8001. [c] Ciganek, E. Org. React. 1997, 51, 201. [d] Langer, P. Angew. Chem. Int. Ed. 2000, 39, 3049. [e] Basavaiah, D.; Rao, A. J.; Santyanarayana, T. Chem. Rev.

2003, 103, 811. [f] Kataoka, T.; Kinoshita, H. Eur. J. Org. Chem. 2005, 45. [g] Singh, V.; Batra, S. Tetrahedron 2008, 64, 4511
[2a] Song, Y. S.; Lee, C. H.; Lee, K.-J. J. Heterocycl. Chem. 2003, 40, 939. [b] Lee, C. H.; Song, Y. S.; Cho, H. I.; Yang, J. W.; Lee, K.-J. J. Heterocycl. Chem. 2003, 40, 1103. [c] Ko, S. H.; Lee, K.-J. J. Heterocycl. Chem. 2004, 41, 613. [d] Lee, C. H.; Lee, K.-J. Synthesis 2004, 1941. [e] Hong, W. P.; Lee, K.-J. Synthesis 2005, 33. [f] Hong, W. P.; Lee, K.-J. Synthesis 2006, 963. [g] Yi, H.-W.; Park, H. W.; Song, Y. S.; Lee, K.-J. Synthesis 2006, 1953. [h] Lim, H. N.; Ji, S.-H; Lee, K.-J. Synthesis 2007, 2454. [i] Song, Y. S.; Lee, K.-J. Synthesis 2007, 3037. [j] Cha, M. J.; Song, Y. S.; Han, E.-G.; Lee, K.-J. J. Heterocycl. Chem. 2008, 45, 235. [k] Jeon, K. J.; Lee, K.-J. J. Heterocycl. Chem. 2008, 45, 615.
[3] Lim, H. N.; Song, Y. S.; Lee, K.-J. Synthesis 2007, 3376.
[4a] Kaye, P. T.; Nocanda, X. W. J. Chem. Soc., Perkin Trans 1 , 2000, 1331. [b] Kaye, P. T.; Robinson, R. S. S. Afr. J. Chem. 1998, 51, 47. [c] Kaye, P. T.; Robinson, R. S. Synth. Commun. 1996, 26, 2085.
[5a] Singh, V.; Pathak, R.; Batra, S. Catal. Commun. 2007, 8 , 2054 [b] Yadav, J. S.; Gupta, M. K.; Pandey, S. K.; Reddy, B. V. S.; Sarma, A. V. S. Tetrahedron Lett. 2005, 46, 655. [c] Hong, W. P.; Lim, H. N.; Park, H. W.; Lee, K.-J. Bull. Korean Chem. Soc. 2005, 26, 655.
[6a] Fuji, K.; Ichikawa, K.; Node, M.; Fujita, E. J. Org. Chem. 1979, 44, 1661. [b] Williard, P. G.; Fryhle, C. B. Tetrahedron. Lett. 1980, 21, 3731.
[7a] Pinner, A.; Klein, F. Ber. 1877, 10, 1889. [b] Pinner, A.; Klein, F. Ber. 1878, 11, 1475. [c] Aplander, K.; Hidestål, O.; Katebzadeh, K.; Lindström, U. M. Green Chem. 2006, 8, 22. [d] Kwok, R.; Wolff, M. E. J. Org. Chem. 1963, 28, 423.
[8a] Engler, A.; Anke, T.; Sterner, O. J. Antibiot. 1997, 50, 330. [b] Ishikawa, N. K.; Yamaji, K.; Tahara, S.; Fukushi, Y.; Takahasio, K. Phytochemistry 2000, 54. 777. [c] Marriott, K.-S.; Anderson, M.; Jackson, Y. A. Heterocycles 2001, 55, 91; [d] Tersawa, K.; Hosoya, H.; Sugita, Y.; Yokoe, I.; Sakagami, H. Anticancer Res. 2000, 20, 2951.
[9] Rizzacasa, M. A.; Sargent, M. V. Aust. J. Chem. 1987, 40 1737.
[10] Ali, B. E.; Okuro, K.; Vasapollo, G.; Alper, H. J. Am. Chem. Soc. 1996, 118, 4264.
[11] Yoneda, E.; Zhang, S. W.; Onitsuka, K.; Takahashi, S. Tetrahedron Lett. 2001, 42, 5459.
[12] Rayabarapu, D. K.; Cheng, C.-H. J. Am. Chem. Soc. 2002, 124,5630.
[13a] Murakami, M.; Tsuruta, T.; Ito, Y. Angew. Chem. Int. Ed. 2000, 39, 2484. [b] Matsuda, T.; Shigeno, M.; Murakami, M. J. Am. Chem. Soc. 2007, 129, 12086.
[14] Fűrstner, A.; Thiel, O. R.; Ackermann, L.; Schanz, H.-J.; Nolan, S.P. J. Org. Chem. 2000, 65, 2204.
[15] Thomas, D. H.; Gregory, P. R. J. Org. Chem. 1979, 44, 12 2004.
[16] Rainford, L. C.; Tanzer, L. K. J. Org. Chem. 1941, 6, 722.
[17] Profit, E. J. Prakt. Chem. 1957, 5, 175. Chem. Abstr. 1958, 52, 10940d.
[18] Chen, Han.; Fan, Y.-H.; Natarajan, A.; Guo, Y.; Iyasere, J.; Harbinski, F.; Luus, L.; Christ, W.; Aktas, H.; Halperin, J. A. Bioorg. Med. Chem. Lett. 2004, 14, 5401.
[19] Drewes, S. E.; Njamela, O. L.; Emslie, N. D.; Ramesar, N.; Field, J. S. Synth. Commun. 1993, 23, 2807.
[20] Kaye, P. T.; Musa, M. A. Synth. Commun. 2003, 33, 1755.
[21] Colson, P.-j.; Awasthi, A. K.; Nagarajan, S. R. WO 9,944,985, 1999; Chem. Abstr. 1999, 131, 185252.

